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Structure factor of hard spheres near a wall
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Within a certain version of weighted density functional theory we have determined the direct correlation
function of a hard sphere fluid close to a hard wall and, based on the Ornstein-Zernicke equation, its inverse
yielding the structure factor. We compare these results as well as the corresponding density profiles with those
obtained from the inhomogeneous Percus-Yevick theory and from published simulation data. We find a good
quantitative agreement at low and medium densities which also persists, apart from some amplitudes, at higher
densities. In addition we have computed the excess coverage and the surface tension.
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L. INTRODUCTION

The interest in interfaces is based on the fact that they -

induce a spatial variation, normal to their positions, of most
correlation functions characterizing the structural properties
of condensed matter. Due to significant theoretical and ex-
perimental challenges, up to now the overwhelming majority
of the research efforts in this area has been devoted to deter-
mining the spatial variation of one-point correlation func-
tions, such as number densities profiles, magnetization pro-
files, or orientational profiles, and their corresponding
integral excess quantities. This situation is caused mainly by
the fact that practically all surface specific experimental tech-
niques, if they provide depth resolution in the first place,
render first one-point correlation functions but rarely higher
order correlation functions.

In the ordered bulk, however, one-point correlation func-
tions are either constant, as in fluids, or display a periodic
crystallographic arrangement of the constituents. A signifi-
cantly deeper insight into the structural properties is pro-
vided by the two-point correlation function, i.e., the structure
factor, which in the bulk is probed directly by x-ray and
neutron scattering experiments.

Obviously one is interested in extending the same level of
describing condensed matter to the interfacial region. This
goal can be achieved by using recently available powerful
x-ray and neutron sources which allow one to perform scat-
tering experiments under grazing incidence, and thus to ex-
tract relevant structural information about interfaces. By
varying the incident or exit angles of the beam, the depth
profile of the lateral structures can be studied. These ideas
have been implemented successfully, e.g., for determining
the critical two-point correlation function of the order param-
eter near the surface of a solid undergoing a continuous
phase transition in the bulk [1-3]. Since any correlation
function between points R;=(r;,z;) and R,=(r,,z,),
where z; and z, denote their relative normal distances from
the mean interface position, depends on r;,=r;—r,, z,, and
Z,, whereas there is only one lateral momentum transfer p
available, it is clear that one needs theoretical guidance in
order to determine the full structure factor from varying p
and the scattering geometry. In contrast to the bulk, where
scattering experiments yield the Fourier transform of the
two-point correlation function directly, at the surface one
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measures its Fourier transform with respect to ry,, but the
Laplace transform with respect to z; and z, which cannot be
inverted directly [4].

The present contribution intends to provide a first step in
this theoretical guidance for investigating the two-point cor-
relation function of fluids close to their confining walls. This
first step consists of the study of hard spheres close to a hard
wall. The choice of this system has four virtues.

(i) The solution of this problem is a prerequisite [5—-7] for
comprehensive studies of fluids with attractive and soft re-
pulsive interactions which may exhibit phase transitions like
wetting phenomena [8] characterized by long-ranged lateral
correlations.

(ii) It is well suited for comparing analytical approaches
with simulation data. In fluids governed by long-ranged
forces, such a comparison is less reliable because it is more
difficult to incorporate such forces into simulations. In den-
sity functional theory the perturbative incorporation of at-
tractive interactions tends to be easier once the hard sphere
reference system is well understood.

(iii) In dense fluids, correlations at short distances are
dominated by the repulsive forces between the particles, so
that the results for the reference system of hard spheres ren-
ders already important insights into the structures of actual
fluids.

(iv) The relevant theoretical results for this model system
do not depend on the absolute value of the diameter of the
spheres. Therefore these results can also be applied to colloi-
dal particles which under favorable circumstances closely re-
semble an effective model of hard spheres [9]. Their struc-
ture factor is even accessible by light scattering. On the scale
of the diameter of colloidal particles, the actual atomic cor-
rugation of the container walls is a minor perturbation of a
flat wall, so that this latter aspect of the theoretical model
represents a reasonable approximation of these systems.

So far the two-point correlation function (or the so-called
total correlation function) of hard spheres near a hard wall
has been studied either by simulations [10—12] or by integral
equation methods [13—16]. Since the latter approaches are
known to fail in describing particular interesting interfacial
phase transitions such as wetting phenomena, we set out to
determine the two-point correlation function based on a cer-
tain version of weighted density functional theory which is
known to capture wetting transitions. Thus in a later stage
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this approach enables one to build on the present results in
order to describe two-point correlation functions near such
phase transitions. Since in the hard sphere system the corre-
lation functions vary rapidly on the scale of the diameter of
the spheres, one must resort to numerically more demanding
weighted density approximations (WDA'’s) as opposed to the
often used local density approximation (LDA). So far for
WDA density functionals the total correlation function has
been determined only in the bulk [17,18].

In the following we first discuss the basic equations de-
termining the total correlation function (Sec. II). In Sec. III
we describe the WDA used in our approach. Our results are
presented in Sec. IV, and summarized in Sec. V.

II. DENSITY FUNCTIONAL THEORY
A. Basic equations for correlation functions

The equilibrium density profile p(R;7,u,V) of an inho-
mogeneous liquid exposed to an external potential V(R)
minimizes the grand potential functional [7,19]

QAR T, w. V) = F(A(R)J:T.V)
- | ertu-vism @

as a function of the chemical potential u, the temperature
T=1/(kgB), and the size V of the system. The Helmholtz
free-energy functional F[p] depends parametrically on the
interaction potential between the particles but not on V(R).
After subtracting the ideal gas contribution
Flp1=1/8) [ vd*RH(R)[ In(A3p(R))—1], it defines the
hierarchy of the so-called direct correlation functions:

S(Flpl—Filp))

cD(R;[pD):=—B 35(R)

2.2)

and

S*(F[p]—Fid p))
SH(R,)SH(Ry)

PRy, Rys[p]):=—B (23)

Thus the minimum p=p of the grand potential Q[p] is de-
termined by

cD(R;[p]) —In(A3p(R))+ Bu(R)=0. (2.4)

A is the thermal de Broglie wavelength, and
u(R)=u—V(R). In Eq. (2.4), u(R) can be considered as a
functional of p(R), so that further differentiation leads to

S(R;—Ry) _ Su(Ry)
p(Ry) op(Ry)
On the other hand, functional derivatives of the equilib-

rium grand partition function Q[ p] yield the hierarchy of the
n-body distribution functions p™(Ry, ...,R,):

cP(R;,Ry)= (2.5)

19}

W=—P(R1)=—<ﬁ(R1)> (2.6)

and

_ l 5’0 . _1_ ép(Ry)
B Su(Ry)Su(Ry) B Su(Ry)

=G(R;,Ry)

1P<2)(R1 ,Ry)—p(Ry)p(Ry)
+p(R;)(R;—Ry)
=:h(Ry _st)P(Rl)P(Rz)

+p(R)) (R —Ry), 2.7

where
G(R, ,R2)=<ﬁ(R1)l3(R2)>" <ﬁ(R1)><ﬁ(R2)>

denotes the experimentally accessible two-point correlation
function in terms of the thermal average ( ) of the fluctuating
number density p(R)=2=;8(R—R;) of the particles. The to-
tal correlation function h(R{,R)=[G(R{,Ry)
—p(RD SR, R/ (p(R))p(R,)), and the direct correla-
tion function ¢®(R;,R,) can be related by substituting Eqs.
(2.5) and (2.7) into

(2.8)

ou(R;) op(Rs)

S(R;—Ry)= f d°R , 2.9
R~k Sp(Ry) Bu(Ry Y
resulting into the Ornstein-Zernicke (OZ) equation
h(Rl,R2)=c<2>(R1,R2)+f d’R,
Xc®(Ry,R3)p(R3)A(R3,R;).  (2.10)

Based on this equation there are two approaches to comput-
ing the total correlation function of the system. In the first
one a closure relation is employed which renders a second
relationship between the direct and total correlation func-
tions. In the case of a hard sphere fluid the Percus-Yevick
approximation (PY) has been found to be reliable at least for
homogeneous systems [20]:

y(R;,Ry)=h(R; ,Ry) +1—c@(R|,R,)

:g(RI’RZ)_C(z)(RIvRZ)a (211)
where y(R;,R,) =exp(B®(|R; —R;|))[A(R;,Ry)+1]. The
radial distribution function is defined as g=h+ 1. For hard
spheres the particle-particle interaction potential ®(r) is in-
finite if the spheres overlap, and zero otherwise. Exploiting
an additional exact relation like the Lovett-Mou-Buff-
Wertheim equation [21] or the first Born-Green-Yvon (BGY)
equation [20]

1
E p(R)) VR,p(Rl): _VRIV(RI)_ f d3R2p(R2)

X[h(R,Ry) +1]Vg P(Ry2),
(2.12)

one can determine #(R;,R;) by simultaneously iterating one
of these sets of three coupled integral equations for
h(R{,Ry), ¢P(R|,Ry), and p(R) [13-16,22]. Within this
approach for a homogeneous fluid explicit analytic expres-
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sions [23] for the PY approximations of the free energy, the
pressure, the direct correlation function

1 R
CPY(R):W["(1+277)2+%77(2+ 77)2;

3

*%77(1+277)2R }@)(IU—RI), (2.13)

P
and, in a restricted range of R, of the total correlation func-
tion Apy(R) [24] are known; o is the diameter of the spheres
and 7= (m/6)pc> the packing fraction.

Within the second approach an ansatz for F[p] enables
one to use Eq. (2.3) in order to obtain ¢‘®(R;,R,) directly,
from which #(R;,R;) follows via the OZ equation (2.10).
Since F [p]=F[p]—Fq p] is not known exactly, this an-
satz requires one to find an appropriate approximation
thereof. Within the framework of the often used local density
approximation (LDA), ¢®(R;,R,) reduces to Dirac’s &
function, and all excluded volume effects are missed. If one
incorporates attractive interactions between the particles
within the LDA, only general results for the long-ranged part
of the correlations can be obtained [25,26]. But for a hard
sphere fluid there are only short-ranged correlations, and
therefore a more sophisticated approximation for F[ p] is to
be chosen.

B. Linear weighted density approximation

There is a large variety of different WDA’s known in the
literature [7]. Some of them are designed to describe the
freezing transition in the bulk, which at present is not our
focus. There are many other approximations which deal spe-
cifically with the problem of describing the fluid structure
near a hard wall. With variable success the density profile
close to the wall as obtained by simulations is reproduced,
and as a rule increasing accuracy demands greater numerical
efforts. For our goal it is important to choose an approach
which reproduces the density profile satisfactorily, but is nu-
merically not too demanding, as we want to determine higher
order correlation functions. In view of these aims we have
based our calculations on the linear weighted density ap-
proximation (LWDA) introduced by Ohnesorge [27]. Ini-
tially this was introduced with the intention of describing
freezing of hard spheres, which occurs at p,o°=0.94 [28],

ing transition the density profile in the vicinity of a hard wall
is reproduced satisfactorily (see, cf., Sec. III). Moreover, this
approach is very appealing because its numerical implemen-
tation is relatively easy.

As a generalization of the original spirit of the WDA, in
the LWDA a set of weighted densities is introduced,

ﬁy(Rl):j @,(|R; —Ry)p(Ry)d’R,, (2.14)
with normalized weights @ ,(r), v=0, ...,3. Their con-
struction is constrained by the requirement that in the limit of
a homogeneous density distribution p,, in the bulk, the cor-
responding excess free-energy functional F.[ p] and the di-
rect correlation function ¢®(R;,R,) reduce to the known
PY results. In most WDA theories one chooses an intuitive
ansatz for F[ p], and tries to find suitable weights in order to
fulfill the requirements mentioned above. In the LWDA,
however, one exploits the simple analytic structure of cpy
[Eq. (2.13)], and considers the following ansatz in the bulk
limit:

S Folp] ;
——————=cpy(R=|R,—Ry|)= a,(p)o,(R),
p(R))p(R,) py( | 1 2|) VZO (p)®,(R)
(2.15)
where the weights are chosen to be [w=(7/6)07]
v, (R)= : 0 R
1, »=0
X 3 R”
1+—=j{1——/, wv=1, 2, and 3.
v o
(2.16)

With this ansatz, Egs. (2.15) and (2.16) determine the coef-
ficients a,. In the next step it can be shown that the func-
tional

3
Fex[p]=V§:‘,O f d*R{f (5 ,(R))

but within this approach the actual fcc crystal structure T (R =5 (R)TF (5.(R 2.17
turned out to be unstable with respect to the simple cubic (sc) 2LP(R) = pu(R)If.(p,(R)} ( )
structure. However, in spite of this failure close to the freez- with the functions
|
( 4
—16+4|1— o In(1-17%), v=0
3(—16+267p—77%% 8
Bw ( 7]2 77)+3(1——)1n(1—77), v=1
—f(m=X 2(1—7) 7 (2.18)
K 0, v=2
40— 687+ 2572 ( 5)
———8| 1 ——|In(1—17%), v=3,
. (-»7 p)



53 STRUCTURE FACTOR OF HARD SPHERES NEAR A WALL

fulfills both requirements stated above; i.e., reducing to
Fpy[p] and cpy(R) in the bulk limit.

The advantage of this approximation, which is called the
linear weighted density approximation (LWDA) because p
depends linearly on p, rests on the fact that the weights are
known explicitly, and that they are independent of the
weighted densities. Therefore, in contrast to the WDA intro-
duced by Curtin and Ashcroft [29], one has not to solve an
implicit equation for @([p];|R; —R,|), for which the exist-
ence and uniqueness of its solution is not guaranteed. In
comparison with other WDAs, which are also based on den-
sity independent weights, the LWDA differs from Tarazona’s
approach [30] insofar as it reproduces the PY results of a
homogeneous liquid exactly, and from the method of Kierlik
and Rosinberg [31] by the absence of distributions within the
weights. However, one has to keep in mind that these nu-
merical advantages are somewhat impaired by the ad hoc
nature of the ansatz used in Eq. (2.17).

Inserting the expression for F[p] [Eq. (2.17)] into the
definitions given in Egs. (2.2) and (2.3), one obtains the di-
rect correlation functions

3
cVR)==32 (f;(ﬁle))
+ f d’R{@,(|R ~R))f,(5,(R))

+[p(R)—p,(R)If,(p(R)w, (IR, —R|)}

and (2.19)

3
PR R)==2 5 | ER{[p(R)=p,(R)]

X Bf, (6,(R)@,(|IR=R,|)@,(|]R—R,|)}
+3B{fv(p(R)))
+/0 (R} @, (IR;—Ry|).

In the following we consider hard spheres exposed to a struc-
tureless hard wall

(2.20)

o, z<o

V(R)= 0, z>o0

(2.21)

This choice of the origin resembles the position z=0 of the
nuclei of the top layer of a substrate which is composed of
particles of radius o/2. The density profile p(z) depends
only on the distance z from the wall, and all correlation
functions are functions of |r{—r,|, z,, and z,, where
R;=(x;,y;,x;)=(r;,z;). The computational calculation re-
quires a careful treatment of the discontinuities of these func-
tions at R;,=|R;—R,|=0. Therefore sometimes R,,, z;,
and z, are used as independent variables.

In order to obtain the total correlation function
h(ry,,z,,2,), three steps have to be carried out. First, the
grand potential [Eq. (2.1)] has to be minimized in order to
obtain p(z). Then ¢®(ry,,z,,2,) can be computed via Eq.
(2.20), and finally one has to invert the OZ equation (2.10).
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FIG. 1. Density profile of a fluid of hard spheres with diameter
o near a planar hard wall located at z=0 according to the LWDA
density functional theory (full curve) as compared with Monte
Carlo data [32] for the bulk density p,o*=0.57 (a) and
p»0>=0.71 (b). Experimental systems are characterized by soft re-
pulsive interaction potentials which lead to a nonzero density dis-
tribution in the depletion layer (0<z<<o) which vanishes for
z—0~exp[—BV(z—0)]. In the bulk freezing occurs for
ppo>=0.94 [28].

These three steps are straightforward, and computationally
less demanding than the PY approach.

III. NUMERICAL RESULTS

A. Density profiles and excess coverages

The density profile p(z) has been determined both by
minimizing the grand potential functional in Eq. (2.1) and by
solving the Euler-Langrage Eqgs. (2.4) and (2.19). For various
mesh sizes (0.020-0.050) for the integration, both ap-
proaches lead to the same profiles (see Fig. 1). These profiles
satisfy the wall theorem p(z=0"*)=8p, where p is the
pressure. We find a satisfactory agreement with Monte Carlo
simulations [32]. In particular the phases of the oscillations
agree well. Only the first minimum appears more shallow in
the analytic approach as compared with the simulation data.

The position z,, of the nth minimum of the density profile
depends on the bulk density [Fig. 2(a)]. For the first mini-
mum (n=1) one observes that the position z; [Figs. 2(a)]
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FIG. 2. For various bulk densities p,, of a hard sphere fluid close
to a hard wall (a) shows the position of the nth minimum z,, of the
density profile divided by the number »n of the minimum times o.
This normalization reveals that for increasing n the distances be-
tween two successive minima tend to the hard sphere diameter o.
The inset in (b) shows p(z)o” as function of z/o for p,c*=0.57
with p(z— )= p, (dotted line). Setting z,= 07/2, these density pro-
files can be divided into layers where the nth layer is formed by
those particles whose centers lie between z,,_, and z,. Based on
this definition, (b) shows the excess number density per area within
each layer [Eq. (3.1)] whose geometrical meaning is indicated in the
inset.

and the value p(z;) of the number density at this position
(Fig. 1) decreases with increasing bulk density. Thus the in-
crease of p, accentuates the formation of the first layer
(zp=0/2<z<z)).

A useful coarse-grained description of the density profile
close to the wall consists of its division into layers where the
nth layer is formed by those particles whose centers lie be-
tween the minima n— 1 and n. For each such layer n the
number density N, per area is given by the integral of the
number density profile from z,,_; to z,,. Since these values
are close to each other, we introduce the excess number den-

sity per area
Z}'l
o= |
Z

n—1

dz[ p(z) = ps)- (3.1

Figure 2(b) illustrates this quantity for various bulk densities.
In all cases the influence of the wall decreases quickly and
monotonically with increasing distance of the layer from the

Pbo'a

FIG. 3. Coverage I' of a hard sphere fluid close to a hard wall.
The full line corresponds to the results of the present LWDA density
functional theory, and the dots denote the molecular-dynamics data
[11]. [One should note that our definition of I (Eq. (3.2)) and that
in Ref. [11] differ by — op;.] The dotted line corresponds to the
scaled particle theory [33]. With the exception of the highest den-
sity, the quoted error bars of the MD data are of the order of the size
of the dots.

surface in accordance with N5 =0. The fact that N* is al-
ways negative confirms the expectation that the repulsive
interactions between the particles and the purely repulsive
substrate potential lead to a net depletion near the surface, as
compared to the behavior of an ideal gas for which
p(z>0a/2)=p,.

This net depletion is also exhibited by the excess cover-
age

F(p)=f:dZ[p(Z)—pb]=~ %pzﬁ; N, (32)

which provides an important overall characterization of the
density profiles. Figure 3 summarizes the results obtained
from the LWDA, simulations, and the scaled particle theory
(SPT) [33]. In the latter theory one assesses the work which
is necessary to generate a spherical cavity in a real fluid. For
a hard sphere fluid this leads to estimates of the coverage

[11],

2

9 7
22 7 3
I'spro m1t2, 7 Pr (3.3)
and the surface tension
,_ 9 7(1+n)
= Byspro” = (3.4)

27 (1—9)° "

Since the first minimum of the LWDA density profiles is
somewhat too shallow, their corresponding converges are
slightly higher than those predicted by simulations. The SPT
underestimates I' slightly. (The surface tension will be dis-
cussed in Sec. III D.)
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FIG. 4. The direct correlation function ¢‘®(r,,z,,z,) within
the LWDA for hard spheres near a planar hard wall for the bulk
density p,0>=0.57. The dotted line corresponds to cpy. The
dashed and dash-dotted lines show the dependence on the lateral
distance ry, for z;=2z,=0 and z;=z,=1.450, respectively, so that
R ,=ry,. The solid curve displays the variation normal to the sur-
face for z; =0 and r,=0, so that R,=z,— o. For the reasoning of
the choices z; =0 and z,=1.450, see Fig. 5.

B. Direct correlation functions

With the knowledge of the density profile p(z) and the
weighted densities p,(z), the direct correlation function
cP(R,,R,) follows from Eq. (2.20). Its analysis reveals that
within the LWDA ¢®(R;,R,) vanishes for |R; —R,|>20,
which is twice the range of the corresponding bulk function.
The direct correlation function lacks a pronounced structure,
and even close to the wall it is quite similar to cpy. It is
dimensionless, negative for |R;—R,| <o, discontinuous at
IR, —R,|= 0o, and vanishes smoothly at |R; —R,| =20 (Fig.
4). For R ,< o, Fig. 4 shows that the perturbation due to the
wall is qualitatively different normal to the surface and par-
allel to it. Parallel to the wall the direct correlation function
is a monotonically increasing function of r, for all z;,=2z,
(see also Fig. 5), similar to the behavior of the bulk direct
correlation function. However, perpendicular to the wall
there is a minimum at R ,# 0. The discontinuity at R ;= o is
determined by an analytically known functional of the equi-
librium profile p(z). Its numerical evaluation reveals that the
discontinuity in ¢®(r,z,,z,) deviates from the bulk value
(—2+39n—7%°)/(1—n)* only by 10-15 %. For R ;> o the
values of ¢®(r,z,,z,) are small compared with the values
for R,<o. In this region the direct correlation function of
the inhomogeneous PY approximation is always zero [see
Eq. (2.11)]. Figure 5 displays the deviation of ¢?(r,z;,2,)
from the bulk value cpy(R;y). This difference vanishes
quickly for increasing values z,=z, and even at the rather
high bulk density p,0°=081 for z;,2,<60,
c¢®(r15,21,22) can hardly be distinguished from the bulk
direct correlation function. According to Eq. (2.4) the spatial
dependence of the direct correlation function ¢‘(R) is de-
termined by Inp(z).

C. Total correlation function

With the knowledge of the direct correlation function
c¢®(ry5,21,25), the total correlation function A(r5,z;,22)

FIG. 5. The difference between the direct correlation function
c¢®(r15,21,2,) of a hard sphere fluid near a flat wall as obtained
within the LWDA, and its bulk limit cpy(R) as a function of r, and
71=z, at the bulk density p,o>=0.57. The choices z;=0 and
z21=0.450 in Fig. 4 correspond to the positions of the two extrema
of ¢P(r1,=0,2,=2,)—cpy(R12=z,) closest to the wall. (The po-
sitions of these extrema do not coincide with those of the density
profile.) The plotted function is discontinuous at r;,= 0.

follows from solving the OZ equation (2.10) by iteration.
Since all correlation functions are translationally invariant in
the lateral directions, the numerical computation is carried
out in Fourier space with respect to the lateral coordinates,

h(p,zy ,z2)=J driexp POTIR(R),Ry),  (3.5)
and similarly for ¢(® and @, . This leads to
3 o0
c@(p.z1.22)=~ %BZO fo dz[p(z) = p(2)]

X p2)@,(p.z—21)@,(p,2—22)
P2+ P (22} @ (P21 —22)

(3.6)
and
Hp.21,22)=h(p.z1,22) —cP(p.z1.2,)
Zfowdzc(z)(p,zl,z)p(z)
X[t(p,z.22) +c¢P(p.z,2)].  (B.7)

Equation (3.8) represents the OZ equation in terms of the
continuous function #(p,z;,z,). Fourier transforming it back
to real space and adding ¢‘®(ry,,21,2,) as determined in
Sec. III B leads to A(r5,21,22). Using cutoffs r}5 =80 and
zZM¥*=8 0, we solved the OZ equation both in real space and
in lateral Fourier space, and obtained the same results.

For z,,z,> o the PY bulk results are reproduced. In the

present model at z;=50, even for a bulk density of
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h(r,»,2,=0,2,)

FIG. 6. Total correlation function A(r,,z;=0,z,) within the
LWDA of a hard sphere fluid near a hard wall at the bulk density
p,0>=0.81. Values larger than 2 occurring at R,~0 are sup-
pressed. (They are displayed in Fig. 7.) On the bottom of the picture
we have plotted contour lines which indicate changes of 4 by a
value of 0.1. For R;,=<1.20 these lines cannot be distinguished on
the present scale, because there A varies too rapidly. Therefore the
contour lines are shown only for R,=1.20.

p,0°>=0.81 the deviations from the bulk values are less than
0.01. Hereby we used as reference an analytically exact ex-
pression of hpy(R) available for 0<R/o<<5 [24]. If one
compares the PY bulk total correlation function with its
counterpart obtained by simulations [15], one finds that both
agree quantitatively except for R, close to o. There the PY
bulk values are smaller. In view of this uncertainty of the
bulk input into the LWDA, the comparison of A(r5,z;,22)
with simulation data for R ,~ ¢ should be made in terms of
the ratio of these results at the wall and the corresponding
bulk reference values.

In Fig. 6, h(ry3,21,22) is shown for a bulk density of
p,0°=0.81. There, values of A larger than 2 which occur
close to |R|,| =0, have been omitted in order to obtain an
appropriate scale for the interesting structures. One recog-
nizes a circular structure which is interspersed by local
maxima and minima. Upon reducing the bulk density this
circular structure dominates the structure of the correlation
function.

For a better quantitative comparison between various re-
sults it is necessary to use one-dimensional plots. To this end
the following representation has proven to be useful [12].
First z; is taken to be equal to z,, and A(r,,z;,2,) is plot-
ted as a function of r, along the wall (path I). Then the
distance Rj,=o is fixed, and z, varies between o and 2o
(path IT). Here the total correlation function reaches it maxi-
mum. (This part was suppressed in Fig. 6.) Finally by setting
r1»=0, z,=0+z; is moved away from the wall perpendicu-
larly (path II). For small densities these plots capture most
of the structure of h(ry,,27,22), so that this representation
can be used for comparative purposes [12,5]; however, at
higher densities additional tests are necessary.

In Ref. [12] Monte Carlo (MC) simulation data [10] are
discussed using this representation. Based on these results,

B. GOTZELMANN, A. HAASE, AND S. DIETRICH

6 + + +
p,0°=0.81
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FIG. 7. The radial distribution function for hard spheres close to
a planar hard wall for a bulk density p,o>=0.81. As indicated in
the inset, g(ry,,2,,22) is shown in the left panel (path I) for
21=2, and r,/0>1; in the middle panel (path I7) for R,= o and
71<z,<z;+o0; and in the right panel (path III) for r;,=0 and
z,>z;+ 0. The full and dashed lines denote the LWDA results for
z1=0 and z,=1.50, respectively. The dotted line represents the
bulk correlation function, and the dots Monte Carlo data [12] for
z;=o0. For a discussion of the comparison between the simulation
data and the analytic results, see the main text. The angle ® denotes
a direction different from the paths I-1II (see, cf., Fig. 13).

Fig. 7 reveals that within certain parts of paths I-III the
Monte Carlo data lie above the LWDA results. At present
one cannot tell which of them is more reliable. In the context
of molecular-dynamics (MD) simulation [11], it was pointed
out that the above Monte Carlo data [10] appear to be sys-
tematically too large, which is also supported by our LWDA
result. The authors of Ref. [12] shared this criticism,
whereby they expect that the Monte Carlo data along path
III are more reliable than those along the other two paths.
Thus we conclude that there is a fair agreement between MC
data and the LWDA results as far as the phases of the oscil-
lations are concerned, whereas the amplitudes must be tested
by future simulations which are urgently needed. Along path
II1 both for p,a>=0.81 (Fig. 7) as for p,o>=0.57 (Fig. 8),
the positions of the extrema of the radial distribution func-

3T  po’=057 T .55
= ™ — z=0
:__ ...... i e bulk (PY)
& 2 ! *  MC (z=0)
k=)

2,=Z,

r,=0

4 3 2 10 1 2 3 4
r, /o (z,-2))/c

FIG. 8. The radial distribution function for hard spheres close to
a planar hard wall at a bulk density of p,o>=0.57. The represen-
tation and the meaning of the symbols are the same as in Fig. 7.
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FIG. 9. The radial distribution function for hard spheres close to
a planar hard wall at a bulk density of p,o>=0.83 along path I for
z,=2,= 0. The full line corresponds to the LWDA results, the dots
denote molecular-dynamics (MD) simulation data [15]. For a com-
parison the dotted curve, we show gpy(r,) in the bulk. In Ref. [15]
these simulation data have been compared with the inhomogeneous
gpy(7r12,21=2,=0), exhibiting a satisfactory agreement. In the
main text the value of g(r,=0,z;=2,) is denoted as g,,(z;).

tion are shifted toward smaller values of z; as compared with
those of the bulk function gpy(R). The comparison between
Figs. 7 and 8 shows that for smaller bulk densities the agree-
ment between MC and LWDA is better, including the ampli-
tudes. However, as expected, close to the freezing transition
(ppo>=<0.94) the quality of the LWDA predictions for g
deteriorates until even negative values for the first minimum
of g appear along path /71.

For path 7 further simulation results are available, though
only for large bulk densities and for z;=o. In this case the
oscillations of A(r,,z1,z,) are more pronounced than those
of hpy(R;y). For p,o>=0.83, Fig. 9 compares the LWDA
with simulation results [11] presented in Ref. [15]. As far as
the phases of the oscillations are concerned both approaches
agree rather well; however, the LWDA yields smaller ampli-
tudes. There are simulation data available [32] even for a
higher density (p,o>=0.9135) which is close to the freezing
transition p£=0.94. These authors suggest interpreting the
buildup of strong oscillations in A(r,,z;,z,) for this density
as an onset of prefreezing of the spheres near the wall. This
suggestion has been confirmed and worked out by Courte-
manche and van Swol [34], who found that the wall is wetted
by the crystalline phase upon approaching the bulk freezing
transition from the low density phase. This prefreezing
seems to occur only in a close vicinity to the bulk freezing
transition. As stated in the first paragraph of Sec. II B, the
LWDA is unable to capture these freezing effects properly.
Therefore our results are reliable only below the onset of this
prefreezing phenomena. It would be very useful if in the
future additional simulation data would be made available,
so that the range of validity of the LWDA can be judged
quantitatively in the low density regime. Furthermore it
would be rewarding also to produce these simulation data for
z;=2,>>0 because there g(ri,,z;,2,) exhibits a rich struc-
ture (see Fig. 7 for z;=1.50).

According to Fig. 9 the difference between the LWDA
and MD is largest for the contact value g,(z;):

6 + + + +
T gps(z1) ....... p(Z1+0') gns(z1) Ga
51— gns(z1) - gPY(G+)

gpgo
H

\/ N
3+4 / 0 L0 G
2 + +
1 1.5 2 25 3
z,/c
FIG. 10. Within the LWDA the contact values

8ps(21)=g(r;;=0,21=12,) parallel to the surface (dashed curve)
and g,.(z;)=g(r;»=0,z,=z,;+0) normal to the surface (full
curve) of the radial distribution function of a hard sphere fluid near
a hard wall for a bulk density of p,a>=0.81. The dash-dotted and
dotted curves denote gpy(o) and p(z;+0)g,.(z;), respectively.
The latter curve corresponds to the contact value of the conditional
singlet density [Eq. (3.8)] normal to the surface, as discussed at the
end of Sec. IIIC (see also Fig. 13). Note that

gps(oo) =gn5(°°)=gpy(0') and gns(°°)P(°°) =gPY(0-)pb ‘

=g(r;,=0,2;=2,). This discrepancy persists even if one
compares the ratio g;:VDA(zl =0)/gpy(R=0)=0.8 with the
corresponding ratio gi‘,ﬂD(zl =0)/gup(R=0)=0.6 of the
simulation results, where gvp(R=0)
=(Bpmp/pp—1)/(47), and pyp is the pressure obtained
with MD. However, glp‘:VDA(zl) has such a small value only
close to z;=o0. Figure 10 demonstrates that gszA(zl) in-
creases rapidly as function of z;, and converges to its bulk
value. In contrast to that the contact value normal to the
surface g,(z1):=g(r1,=0,z,=z;+0) attains the same
bulk value very slowly and oscillatorily. This pronounced
difference between the behavior at contact parallel to the
surface (ps) and normal to it (ns) is remarkable. It resembles
a similar behavior found in a Lennard-Jones system which
was analyzed in the framework of the BGY hierarchy and the
superposition approximation [35]. In this study (in which
lateral contributions of the correlation function have been
approximated by the bulk correlation function) the peak val-
ues of the first maximum of g(r,=0,z;,z,) as a function of
z, for fixed z;, which one may interpret as the correspon-
dence of the contact values, show a similar oscillatory be-
havior normal to the surface.

It is rewarding to compare the LWDA with the inhomo-
geneous PY theory [Eq. (2.11)], because both reduce to the
same homogeneous limit in the bulk. For this comparison we
choose to analyze the continuous correlation function
HR;,R)+1=h(R,,Ry))+1—c?(R,,R,) [see Eq. (3.7)].
Figure 11 displays this correlation function parallel and nor-
mal to the surface within the LWDA. The values of ¢+ 1
along these two paths are close to each other for R,>o0,
where they approach their asymptotic value 1 rapidly. How-
ever, for R;,<o the values of ¢+ 1 differ significantly.
Moreover, parallel to the surface 7+ 1 exhibits a maximum at
R,~0.2, whereas normal to the surface r+1 attains its
maximum nearly linearly at R;,=0. In Fig. 2 in Ref. [13]
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FIG. 11. Comparison between the negative direct correlation

functions —c¢@®(ry,,2,,2,) for z;=z,=0¢ and for r;,=0 and
zy=o0, respectively, with #(r\5,z1,20)+t1=h(ry5,21,22)+1
—c®(r15,21.22) [Eq. (3.7)] as obtained within the LWDA. In an
exact theory the full curve and dashed curves as well as the dotted
and dash-dotted curves coincide for Ry,=\/r?,+ (z; —z,)?< 0. The
LWDA violates this slightly. This violation is largest for the present
case z; =0, and disappears rapidly for increasing values of z, .

this correlation function ¢+ 1 as obtained by the PY theory
(within which £+ 1 equals the cavity function y by construc-
tion, which is neither the case within the LWDA nor in gen-
eral) is shown for the same density and representation as in
Fig. 11. By inspection one observes an almost quantitative
agreement, which we find to persist even at higher densities,
as one can infer from Ref. [15].

In addition, Fig. 11 allows us to investigate to what extent
LWDA violates the exact relation A(R;,R;)=-—1 for
R;;<a,ie., t+1=—c®. By comparing the full curve with
the dashed one and the dotted curve with the dash-dotted
one, respectively, one finds that parallel to the surface there
is only a slight violation, whereas normal to the surface this
is more pronounced. To our knowledge there is no a priori
reason that any WDA fulfills this requirement from the out-
set. (Below we shall point out a possibility to overcome this
difficulty.) We find that this violation, i.e., h+1%#0 for
R;<o, disappears rapidly for z;>0o.

The physical understanding of the total correlation func-
tion is facilitated by resorting to Percus’ test particle theorem
[36]. If 3, denotes a semi-infinite fluid exposed to a substrate,
and 3’ the same kind of fluid exposed to the same substrate
but in addition with a fluid particle fixed at a position R; in
front of this substrate, the test particle theorem states that the
one-point correlation function of the number density in 3./,
the so-called conditional singlet density [37] ps/(R,|R)),
which depends on R, and parametrically on R, can be ex-
pressed in terms of the number density and the total correla-
tion function A of the system X:

Pz (Ry|R))=px(Ry)[2x(R;,Ry) + 1] (3.8)
Thus in the present case the product
p(z)[h(r12,21,22) + 1]1=p(22)g(r12,21,2,) describes the
number density distribution of a hard sphere fluid which is
exposed to an environment consisting of a hard planar wall
and a hard sphere of radius o fixed at the point R, in front of

FIG. 12. The conditional singlet density p(R,|R))
=p(2,)8(r12,2,=0,2,) within the LWDA of a hard sphere fluid
near a hard wall at a bulk density p,0®=0.81. It corresponds to the
density distribution of a hard sphere fluid exposed to a hard half
sphere sitting on top of a hard planar wall. The circles and the dots
in the contour line plot at the bottom denote the positions of the
local minima and maxima, respectively. Note the logarithmic scale
of the ordinate. Close to the wall and to the half sphere,
p(R,|R)) varies so rapidly that we have omitted the contour lines
for p(R2]R1)0'3> 1.3. From one contour line to the next
p(R,|R,) varies by an amount of 0.20-" 3. The cross denotes the
position R, of the center of the fixed half-sphere.

the wall. Based on our knowledge of iy and ps, Fig. 12
shows how the presence of the sphere fixed at r;,=0 and
z, =0 perturbs the translationally invariant density profile in
the system 3. The location of the local extrema of
p(R,|R,) are distributed rather regularly. Approximately this
can be understood as the superposition of the oscillatory den-
sity distribution around a fixed particle in the bulk, and the
oscillatory density variation near a planar wall. This checks
with the fact that the extrema of the density profile ps(z,)
and the values of z, of the extrema of p(R,|R;) almost
coincide (see Table I). In accordance with the fact that for
decreasing number densities the position of the first mini-
mum of px(z,) shifts to larger values of z,, one finds the
same for p(R;|R,). Thus the influence of the perturbation
induced by the fixed sphere is mainly reflected in the lateral
positions r, of these extremas. The content of Figs. 7 and 8
and of Table I characterizes the structure of the total corre-
lation function well, and offers a good opportunity for a
comparison with future simulation studies.

The conditional singlet density p(R;,|R;) also allows one
to shed additional light onto the mechanism leading to the
oscillatory density profile near the wall (Fig. 1). To this end
we consider the first BGY equation [Eq. (2.12)], which ex-
presses the force balance at a point R; between the external
force —VV(R;), the force resulting from the interaction po-
tentials of the fluid particles around R, which contains
p(Ry|R)), and the entropic repulsion given by
p’l(RI)VRlp(Rl). In the absence of an external potential
[V(R)=0] the fluid is homogeneous (p=const), so that in
spite of p(R,|R;)>0 the integral in Eq. (2.12) vanishes due
to the symmetry and the vector character of the integrand.
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TABLE 1. Positions of and values at the extrema of the condi-
tional singlet density p(R,|R;) [Eq. (3.8)] for z,=0, z,<2.70,
and r,,<3.70 within the LWDA (see Fig. 12). z,, denotes the loca-
tion of the extrema of the density profile. Note that the values for
z, and z, are rather close.

p,0=0.81
minima maxima

2p/0 zpl0 riplo p(Ry|R) 0> z,/0 z3/0 rilo p(Ry|R))0?

045 045 148 0.27 0.00 0.00 1.00 20.06
045 2.56 0.36 0.00 2.10 8.02
045 3.57 0.39 0.00 3.15 7.08

145 135 0.00 0.34 1.05 095 0.31 3.36
145 2.04 0.52 1.05 1.70 1.70
145 3.13 0.55 1.05 2.76 1.51

240 240 049 0.65 2.00 195 0.00 1.23

1.90 0.89 1.06
240 248 0.68 195 221 1.07
240 3.69 0.68 2.00 335 1.04

ppo>=0.57
minima maxima
2,/0 z3/0 rplo p(Ry|R)0® z,/0 z5/0 r12/0 p(Ry|R))o?

0.65 0.65 1.62 0.35 0.00 0.00 1.00 4.57

0.65 2.72 0.41 0.00 2.25 2.44
0.65 3.79 0.41 0.00 3.35 2.36
1.65 1.60 0.00 0.47 1.10 1.00 0.00 1.34
1.65 2.14 0.52 1.10 1.85 0.74
1.65 3.37 0.53 1.10 3.06 0.70
2.70 2.65 0.00 0.55 2.10 2.15 0.00 0.63
270 2.53 0.56 2,15 237 0.60

2.15 3.67 0.60

This corresponds to the fact that in a homogeneous fluid the
forces due to the fluid particles surrounding a point R; are
radially symmetric, and thus compensate each other in op-
posing directions. If, however, the translational symmetry is
destroyed, e.g., by the presence of a wall, there are less par-
ticles to the left of R; than to the right, which leads to an
imbalance of these forces, i.e., the integral in Eq. (2.12) does
not vanish. Therefore the total force balance is accomplished
by a spatially varying density profile.

This general mechanism which is of current interest [37]
can be followed in detail for the present model system of
hard spheres. By studying the smooth cavity function y(R)
the limiting case of a hard sphere interaction potential leads
from Eq. (2.12) to [16]

L9 e vien-2n [ ()
—————p(z))=—B>—V(z))—27 22p(z
p(zy) 511p ! '8521 ! 29— 2pie2

X g(R;p=0,21,22)(z21—22).  (3.9)
In this case the influence of the aforementioned imbalance of
the internal forces on the density profile can be analyzed in
terms of the pressure. At a hard wall the pressure is given by
the product of the probability that a particle hits the wall,
which is proportional to p(z=0c") and a factor determined

9(®), f, (®) &°, f, (@) 6°

FIG. 13. Three correlation functions related to the radial distri-
bution function of a hard sphere fluid close to a planar hard wall for
the bulk density p,o°=0.81. Based on the notation in the inset of
Fig. 7, the correlations are shown for |R,|= 0 as function of the
angle ® which denotes the deviation from the direction parallel to
the wall (z,=z,+ 0 sin®). The dotted line corresponds to
g(P):=g(R,=0,z2,=0,2,=2z;+ 0 sin®) which is also shown in
the middle panel of Fig. 7. The full line denotes the conditional
singlet density f;(®):=p(z,=2,+0 sin®)g(R,=0,2,=0,2,
=z, + o sin®) which is also shown in Fig. 12 where it corresponds
to that part of the boundary of the two-dimensional plotted surface
which is adjacent to the back left edge of the cube. The dashed
curve denotes the integrand f,(®):=27f;(P)o sin® of the inte-
gral appearing in Eq. (3.9). Thus the area under the curve f,(®)
measures up to the minus sign, the net force acting on the test
particle at z;=o. The variation of f,(90°) as a function of z, is
displayed as the dotted curve in Fig. 10.

by the momentum distribution. Since in classical statistical
mechanics the momentum distribution is independent of the
interaction potential between the particles, it follows from
that of an ideal gas. Based on the equation of state
Bp=pp, one is led to the wall theorem Bp=p(z=0"),
which can be proven more generally and rigorously [36]. The
relative value of p(z=0") compared with p, depends on the
interaction potential between the fluid particles. If it is pre-
dominantly attractive the density at the hard wall will be
smaller than p,, and drying will occur [8]. In the present
case of a hard sphere fluid Fig. 13 shows that at the wall the
imbalance of the internal forces leads to a net force directed
toward the wall, resulting in p(z=0")>p, . In accordance
with Eq. (3.9) this corresponds to a negative gradient of
p(z) at z=0" (compare Fig. 1). Thus these force consider-
ations demonstrate why the density distribution of a hard
sphere fluid exhibits a sharp maximum at a hard wall. The
dotted curve in Fig. 10 shows how the value of the dashed
curve in Fig. 13 at ® =90° varies if one moves with z, away
from the surface z; = o. Thus the oscillations of this value as
a function of z; signals that one also has to face oscillations
in the density profile, which is in accordance with Fig. 1.
Therefore the force distribution in this inhomogeneous fluids
allows a helpful insight into the mechanism behind the den-
sity distribution close to the wall. Furthermore these consid-
erations are useful in the context of driving additional ap-
proximation schemes for the description of inhomogeneous
fluids [37].
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FIG. 14. Surface tension of a hard sphere fluid close to a hard
wall. The full line denotes the results of the LWDA, and the dot
those of molecular-dynamics simulations [11], and the dotted line
corresponds to the scaled particle theory [33].

D. Surface tensions

From the previous subsections it is apparent that a thor-
ough discussion of the two-point correlation function is ag-
gravated by the fact that it depends on four variables: ry,,
Z1, 2, and p,. Therefore it is very useful to consider not
only the local but also the global properties of a liquid close
to a wall. There are two global quantities which are of ex-
perimental interest: the excess coverage, which has been dis-
cussed in Sec. III A, and is accessible by gravimetric mea-
surements; and the surface tension y which, for example, is
important for contact angles [8]. Via the exact sum rule [19]

B?’:%jo dzlfo defde?"’lzP’(Zl)P'(h)r%z

XC(Z)(FIZ,ZI,Zz), (3]0)
it can be expressed in terms of the direct correlation function
and the derivate of the density profile
p(2)=p(2)O(z—0), where p,(g)=p(c™’). Figure 14
shows that for p,o°<0.6 the predictions of the LWDA are
very close to those of the SPT [Eq. (3.3)]. For larger values
of p, the LWDA yields smaller values, also in comparison
with simulation data. For even larger values of p, the nu-
merical accuracy of evaluating Eq. (3.10) deteriorates be-
cause therein the derivative of p(z)=p,(z)®(z— o) gener-
ates differences of large numbers. In this regime it seems to
be appropriate to obtain the surface tension as the surface
contribution to Eq. (2.1) by subtracting the bulk term and
performing the thermodynamic limit. We defer the analysis
of this alternative approach to a future study, which is also
planned to include attractive interactions. According to Fig. 4
the direct correlation function near the wall does not differ
dramatically from its bulk form. Thus one may be inclined to
surmise that in Eq. (3.10) the derivative of the density profile
contains the most relevant interfacial property in determining
v. However, by checking this idea one finds that this re-
placement leads to values of y which are twice as high as the
proper ones. Therefore the relatively small differences be-
tween ¢®(r5,z,,2) and its bulk value turn out to have a

strong influence on global quantities like the surface tension.
Thus a detailed quantitative understanding of the interfacial
two-point correlation function is indispensable.

IV. SUMMARY

We have obtained the following main results for the struc-
ture of hard spheres close to a hard wall.

(1) Within a recently introduced linear weighted density
approximation (LWDA) the number density profile close to
the wall has been determined. There is a satisfactory agree-
ment with published Monte Carlo data (Fig. 1).

(2) A coarse-grained description of the density profiles
reveals the depletion of the particles close to the wall (Fig.
2).

(3) Apart from the bulk densities close to the freezing
transition, the predictions of the LWDA for the excess cov-
erage (Fig. 3) and the surface tension (Fig. 14) are close to
those of the scaled particle theory and simulations.

(4) Within the LWDA we have determined the inhomoge-
neous direct correlation function, which differs from its bulk
form only rather close to the surface (Figs. 4 and 5).

(5) Based on these results we have solved the Ornstein-
Zernicke equation for the total correlation function
h(R;,R,). Upon increasing the bulk density, its dominant
circular structure is enriched by the pronounced formation of
local maxima and minima (Fig. 6). A detailed comparison
with published simulation data reveals a satisfactory agree-
ment with respect to the phases of the oscillatory structure of
the radial distribution function g(R;,R;)=h(R;,R;)+1,
but discrepancies for certain amplitudes (Figs. 7-9). There
are indications that an understanding of these differences re-
quire improved simulation data.

(6) Based on the test particle theorem the radial distribu-
tion function allows one to analyze in detail the conditional
singlet density p(R,|R;) =p(R,)g(R;,R,). The extrema of
this correlation function (Fig. 12 and Table 1) are well suited
to compare future studies involving different approaches for
this model system.

(7) Within the framework of the Born-Green-Yvon equa-
tion (2.12) the knowledge of the conditional singlet density
enables one to analyze in detail the balance of forces acting
on a test particle close to the wall [see Eq. (3.9) and the
discussion thereafter]. This enhances the understanding of
the layering in the density profile close to the wall.

Within the LWDA the total correlation function violates
the exact relation (R ,<0,z;,z,) = — 1. Most probably this
deficiency is shared by all other presently available weighted
density functional theories. We want to point out that the test
particle theorem [Eq. (3.8)] offers the possibility to over-
come this problem. If one directly computes the one-point
correlation function of the number density for a fluid ex-
posed to a substrate plus a fixed particle by minimizing the
grand potential functional for such a configuration, and di-
vides this by the corresponding density profile in the absence
of the fixed particle, one obtains 2(R;,R,) + 1, which fulfills
the above requirement by construction. However, this mini-
mization procedure requires a substantial numerical effort.
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